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Abstract-During the daylight hours, the shallow regions of a reservoir sidearm absorb more heat per unit 
volume than the deeper parts, leading to a nett horizontal pr$rure gtddient that drives a circulation in the 
sidearm. The spin up time for a typical sidearm is of the order of or longer than a day, implying that the 
flow is intrinsically unsteady. In this paper, the unsteady daytime circulation and temperature structure in 
a reservoir sidearm is modelled by the natural convection of a fluid contained in a 2-D, triangular cavity. 
The absorption of solar radiation that drives the flow is modelled by Beer’s law and a heat flux bottom 
boundary condition formulated from the amount of heat that penetrates the entire local depth. Asymptotic 
solutions of the resulting equations are found and these reproduce some of the observed features of the 

daytime circulation in a reservoir sidearm. 

1. INTRODUCTION 

THE UNDERSTANDING of the fluid mechanics of lakes 

and reservoirs has expanded rapidly in recent years 
owing to the importance of fluid dynamical processes 
for determining the quality of water supply. A recent 
review of dynamical processes pertinent to lakes and 
reservoirs can be found in Imberger and Patterson [I]. 
In particular, processes that give rise to horizontal 
rather than vertical transport of water properties have 
received considerable recent attention. An example of 
a limnological situation where horizontal processes 
play a part in the overall dynamics is differential heat- 
ing or cooling, which occurs when neighboring regions 
of the sanie water body are heated or cooled relative 
to each other. This leads to a horizontal pressure 
gradient due to thermal expansion and a significant 
flow may result. The flooding of a reservoir basin 
usually involves the inundation of many small valleys 
around its perimeter. These flooded valleys (which 
are then called sidearms) are typically only tens to 
hundreds of metres long and only a few metres deep 
where they join with the main body of the reservoir. 
Sidearms are often well protected from the wind and 
so thermal forcing associated with differential heating 
and cooling is an important mechanism for promoting 
exchange of water between the sidearm and the main 
body of the reservoir. 

During the day, the water column absorbs solar 
radiation according to Beer’s law [2] ; the intensity of -sidearms were found which are consistent with the 
the light decays exponentially with depth and the rate experimental results of Brocard and Harleman [7]. 

._ Poulikakos and Bejan [8] found the steady-state flow 
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of decay is a function of the wavelength of the light 
and the turbidity of the water. This leads to a shallow 
surface layer that can be several degrees warmer than 
the underlying water. Near the shore, topographic 
effects become important as the heat absorbed is dis- 
tributed over a decreasing depth and the water in 
the shallows becomes, on average, warmer than the 
deeper offshore regions. As pointed out by Monismith 
et al. [3], this heating mechanism leads to the tem- 
perature scaling with the inverse of the distance from 
the shore. This temperature structure drives a surface 
outflow of warm water from the edges of a reservoir 
sidearm. Flows due to this mechanism have been 
observed by Adams and Wells [4] and Monismith er 
al. [3] with measured velocities of the order of 5 cm 
S ’ These studies also indicated that the three-dimen- 
sional topography of a reservoir sidearm may lead to 
a complicated three-dimensional velocity and tem- 
perature structure. 

In the absence of wind or other momentum inputs, 
the flow described above can be classified as natural 
convection, for which there is a large body of litera- 
ture. Natural convection in shallow cavities is the most 
relevant to the geophysical phenomena considered in 
this paper. 

Sturm [5] and Jain [6] studied a cooling pond side- 
arm and their studies are relevant to the present situ- 
ation. In those papers, steady-state integral solutions 
for heat and mass fluxes in idealized cooling pond 
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NOMENCLATURE 

A bottom slope 
(I,,, h,,, oli, n = 0, 1, coefficients 

C, specific heat of water 
F 4nm, > F 6nm special functions 

9 acceleration due to gravity 
Gr Grashof number, 

Gr = sa&l(PoC,~3r?4) 
6 surface heating intensity [-C mm’ ss’] 
h vertical length scale 
I radiation intensity [W mm’] 

Ill intensity of radiation incident on the 
surface [W m ‘1 

I horizontal length-scale 

P’ pressure 

:” 

internal temperature source [ C s- ‘1 
magnitude of internal temperature 
source 

t’ time 
t non-dimensional time, t = t’v$ 
f, e-folding time 
T’ temperature 
T non-dimensional temperature 

T = (T’~ T&N,k-rl/& 

2”) 
reference temperature 
asymptotic temperature solution 

UI, 14 velocities 
u, it’ non-dimensional velocities 

u = u’/(A Gr KV) and 
i+ = w’/(A’ Gr KV) 

-Y 

x’, Z’ Cartesian coordinate system, z vertical 
x, Z non-dimensional coordinate system, 

.Y = At@ and 2 = ‘1~‘. 

Greek symbols 

;. 
thermal expansion coefficient 
eigenvalues 

AT temperature range-scale 

rl attenuation coefficient [m ‘1 
I< thermal diffusivity 
L’ kinematic viscosity 

PO reference density 

; 

Prandtl number, v/ti 
non-dimensional streamfunction 

4J (0) asymptotic streamfunction solution 
$‘I”‘, , I)$‘) parts of asymptotic 

streamfunction solution 
I):;,. , I&“, parts of asymptotic 

streamfunction solution. 

Subscripts 
(.),, etc. partial differentiation. 

Superscripts 
(.)‘“‘, k = 0, 2, . . terms in asymptotic 

expansion. 

upper boundary using asymptotic methods. In more 
directly geophysically motivated studies, Scott and 
lmbergep [9] and Scott [lo] considered the steady- 
state flow in three-dimensional cavities of arbitrary 
geometry which were usgd to model estuarine dyna- 
mics. Those studies considered the steady-state den- 
sity and flow structures in two- and three-dimensional 
estuaries which are subject to a number of buoyancy 
and momentum inputs, again using asymptotic 
methods. 

All of this work has been for steady-state 
conditions. However, Monismith et al. [3] show that 
the spin-up time for a typical sidearm is at least of the 
same order as the period of the diurnal forcing which 
means that during the day, at least in the deeper parts 
of a sidearm, steady state is not achieved before there 
is a change in the nature of the forcing. This was 
confirmed by the observations of Monismith et al. 
where Ule night-time flow in the sidearm did not 
reverse until about 7 h after the heat flux at the surface 
had changed from cooling to heating. Consequently, 
the flow is intrinsically unsteady and the transient 
behavior must also be included in a model of sidearm 
behavior. 

Patterson [ 111 studied transient natural convection 

in an internally heated rectangular cavity which was 
initially isothermal and at rest. He found that the 
approach to steady state could be classified as either 
conductive, transitional or convective, depending on 
the value of the Grashof number, Gr, relative to vari- 
ous combinations of the aspect ratio of the cavity and 
the Prandtl number o = V/K of the fluid, where : 

Gr = gaATh3 
v2 

(1) 

In equation (1) and the definition of cr, g is the accel- 
eration due to gravity, a is the thermal expansion 
coefficient, AT = Q,,hl’/v, where QU C m ’ s-- ’ i&the 
magnitude of the volumetric heating rate, 1 is the 
length of the cavity, h is the height of the cavity, v is 
the kinematic viscosity and K is the thermal diffusivity 
[ 111. The classifications could be further divided into 
subclassifications characterized by the relative mag- 
nitudes of various time-scales of the flow and the 
nature of the internal balances at steady state. In some 
cases, the approach to steady state was oscillatory, 
but in all cases it was achieved in a time scale of h*/v, 
which is a scale for thr; time it takes for viscosity to 
diffuse momentum across the depth of the cavity. For 
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a reservoir sidearm, h is typically 5 m, leading to a 
spin-up time of - 2.5 x lo7 s (% 250 days) for molec- 
ular viscosity or - 2.5 x lo5 s (Z 2.5 days) for a typical 
value of the eddy viscosity of 10m4 m* s-’ [4]. Thus, 
even if the flow is turbulent, the spin-up time is com- 
parable to the time scale of the forcing and so, as 
already discussed, the flow in a typical sidearm is 
intrinsically unsteady. 

There are very few analytical or experimental studies 
aimed at understanding the transient response of a 
cavity with sidearm geometry to thermal forcing. 
Patterson [12] numerically investigated the daytime 
circulation, assuming that the heat input was uni- 
formly distributed over the local depth in a triangular 
cavity. Further assuming that the bottom of the model 
sidearm was perfectly reflective and the bottom slope 
was small led to a horizontally linear internal heating 
source term. An additional feature of this model was 
an adjustment of the mean heat input so the system 
would reach steady state. The results of Patterson 
[12] show that, even though the internal heating is 
vertically uniform, advection ultimately sets up a 
strong stratification with horizontal isotherms in the 
majority of the cavity and vertical isotherms occurring 
only in the shallow tip region. 

There appear to be no analytical or experimental 
studies of unsteady natural convection forced by the 
absorption of solar radiation in sidearm geometries. 
Asymptotic solutions for the diurnally forced case, 
including the effects of unsteady forcing, have been 
found by Farrow and Patterson [13]. lnherent in that 
work is the simplifying assumption that the heat input 
and output is vertically uniform and thus, to first 
order, the resulting temperature structure is also ver- 
tically uniform. The current work is concerned with 
the daytime forcing only. with radiation absorption 
following Beer’s law, potentially leading to a strong 
temperature stratification. 

2. MODEL FORMULATION 

The daytime fiow within the sidearm is modelled by 
the flow of a fluid contained in the wedge 
-Ax’ < z’ < 0 in the (x’, z’) plane where A is the 
bottom slope of this idealised sidearm (see Fig. 1). 

4 

This is the simplest domain that allows for a con- 
tinuously variable depth [ 131. The equations govern- 
ing the fiow and temperature within the sidearm are : 

The/for& k> the internal heating term Q is chosen to 
rcflcct the haytime heating cycle of a reservoir sidc- 
arm. During the day, the water in a sidearm absorbs 
solar radiation incident on the surface. The radiation 
intensity at a particular wavelength decreases with 
depth according to Beer’s law [ 141 : 

where I0 is the intensity at the surface and ‘1 is the 
attenuation coefficient which is a function of the wave- 
length of the incident radiation and the turbidity of 
the water. For the purposes ofthis model, it is assumed 
that the radiation is characterized by a single wavc- 
length and the water has a uniform turbidity and thus 
a single and constant attenuation coefficient. Solar 
radiation is often characterized by a few discrete wave- 
lengths with various intensities and attenuation 
coefficients associated with each one [ 141, Later in this 
paper. the problem is linearized and so the solutions 
associated with any extra wavelengths could be super- 
imposed to more accurately represent any particular 
radiation. Assuming no reflection, the corresponding 
volumetric heating rate is given by : 

where C,, is the specific heat of water at constant 

FIG. 1. Schematic of thz flow domain showmg the geometry and coordinate system. 



1960 D. E. FARROW and J. C. PATTERSON 

pressure and Ho = Z,/(p&). This is the assumed form However asymptotic solutions for the unsteady tem- 
for Q for the daytime circulation used in equation (4). perature and velocity fields can be obtained. 

The internal heating Q defined by equation (7) is 
horizontally uniform and so in itself will not generate 
a horizontal pressure gradient to drive a flow in the 
sidearm. The principal driving mechanism for the cir- 
culation comes from the temperature boundary con- 
dition applied at the sloping bottom boundary 
Z’ = -Ax’. Clearly, there will be some radiation that 
penetrates all the way to the bottom of the sidearm. 
For this model, it is assumed that this radiation is 
absorbed by the bottom which then immediately 
releases this heat as a bottom boundary heat flux. This 
leads to a boundary condition for the temperature : 

The system of equations (2)-(12) is non-dimen- 
sionalized in the following way. Since the geometry of 
the cavity imposes no natural length-scale, the only 
length-scale available is the inverse of the attenuation 
coefficient q. Thus, the vertical coordinate must scale 
likez’ % ‘I-‘. The geometry of the cavity then provides 
a scale for the horizontal coordinate, x’ z (Al)-‘. 
The flow is driven by the generation of a temperature 
gradient which suggests that the temperature diffusion 
scale is the appropriate time-scale, that is t’ - (I$) _ ’ 
The remaining scales are obtained by first balancing 
the unsteady term in the temperature equation (4) 
against the source term to give a scale for T’- T,, = 
AT z Ho(q). Assuming that the flow is close to 
hydrostatic yields a scale for the horizontal velocity 
u’ x A Gr lcq where the Grashof number Gr for this 
paper is given by : 

on 2’ = -As’, (8) 

where fi is the direction normal to the sloping bottom. 
This boundary condition yields a temperature with a 
strong horizontal dependence, especially near the tip 
s’ = 0 where topographic effects are important. 

At the upper boundary, it is assumed here that 
during the day the amount of heat transferred through 
the surface by sensible heat transfer, evaporation or 
long-wave radiation is small compared with the 
amount absorbed via solar radiation. In other words, 
it is assumed here that the surface is insulated so that : 

2T 
- = 0 on z’= 0. aZf (9) 

The natural zlocity boundary conditions that most 
realistically (in the absence of any wind) model a 
sidearm are that the bottom is solid and that the 
surface is stress free, that is : 

au’ I - = lj” = 0 on 2’ = 0. 
22 (10) 

u’ = iv’ = 0 m =’ = pA.y’. (11) 

It now only remains to define the far field (x--t 
Z) and initial conditions for this model. The initial 
conditions are that the fluid in the sidearm is initially 
at rest and has a uniform temperature. That is : 

j,/ = w’ = 0, T’ = To at t’ = 0. (12) 

In a real sidearm, there may be some structure associ- 
ated with the previous night’s cooling but, in this 
idealized model, the primary interest is in the spin up 
of the daytime flow : thus the simple initial conditions 
(12) are used. In the solution method adopted in this 
paper, far field conditions are not necessary : however, 
for completeness. they are $, T, + 0 as x -+ co. 

Equations (2)-(5) along with the boundary and 
initial conditions (8)-( 12) and the far field conditions 
fully define an idealized, two-dimensional model for 
the daytime circulation in a reservoir sidearm. The 
system of equations is non-linear and there is no 
general method available for finding the solution. 

GrEgaH, 
l&f4 

(13) 

Finally, the continuity equation (5) gives a scale for 
the vertical velocity w’ x A2 Gr q. Using these scales 
to nondimensionalize equations (2)-( 12), eliminating 
the pressure and introducing a non-dimensional 
stream function $, where the dimensionless velocities 
are u = - $; and w = ti,r, yields the equations : 

$,,,+ A2tirar -t A2 Gr(tWzzz- tiAzzx) 

+A4 W$.lC/..z-$z$yJ 

= ~(~Z;-;+2A’ICI,~,~,,+A4~,,,,~)+T~, (14) 

and 

T,+A’G~(-~J+I/I~T_) = A’T,,+Tz,+eZ, 

(15) 

where all variables are now dimensionless. The boun- 
dary conditions become : 

tj = $ZL = 0, Tz = 0 on z = 0, (16) 

* = *;=o, c+A2r = _e-‘ on 

Jrn 
z= -x, 

(17) 

and the initial conditions T = $ = 0 at t = 0. 

3. ASYMPTOTIC SOLUTION 

The small parameter A appears as even powers in 
the above boundary value problem. Following Cormack 
et al. [ 151, the dependent variables are expanded as a 
series in A2 : 

T= T’“‘+A2T’2’+A4T(4)+ 

$ = tf0’+A2$‘2’+A4$(4)+ . (18) 

Substituting these exprizions in equations (14) and 



Daytime circulation and temperature structure 1961 

(15) and equating like powers of A yields a system of 
equations that can, in principle, be solved recursively. 
The general O(A”) equations are (n even) : 

n-4 

+Gr 1 [~lk’~l”,;k-4’-~!k)~l=;k--4)] 
k=O 

k evsn 

n- 2 
71”‘+& 1 [_~!“‘~--k--2)+~1k)72n~k~2)] 

k=O 
k even 

= T’“‘+ p-2 +a,,e’ zz XI 1 (20) 

with surface boundary conditions : 

)p’ = $‘“’ = () zz on z=O 

e)=O on z=O, (21) 

and bottom boundary conditions : 

p, = $‘“’ = 0 1 on z= -x, 

T’.“‘+ y (_‘)*/21.3;,;,y) (p-k’+Q-k-~2)) 

k=2 
k even 

= -BnOeCY on z = -x, (22) 

Z2 
p”) = f __e-‘+ - 2~X+z+~x+~(l-e~‘) 

X 

x exp [ - (Frtlcos (Fz). (26) 

It should be stressed that this temperature solution 
does not include the effects of convection or horizontal 
conduction which are both second-order effects and 
would thus appear in p2). 

The forcing term in equation (23) is given by : 

Tp = a,Cx)+b,(x)z2+c,(x)t 

; ~ ,.! 
j, + nz, a,(x)e-‘“” 1’2’ cos (nnzix) 

+ f b,,(x)te wn’ + cos (mzjx) 
?I=, 

+ i c,(x)ze-‘““‘y’2’sin (n7czjx), (27) 
“=I 

where a,, b, and c,, n = 0, 1,2, . , are given for n = 0 
by: 

1 1 
~=~-_(l-e-\)+ie~’ 

x- x 

bo=-$ 

where quantities with negative superscripts are zero 
and dnO = 1 if II = 0 and is zero otherwise. Only the 

1 
C”E --) 

X2 
O(A”) equations are solved here. These equations are : 

andforn=1,2,...: 

$1:; = crlj:;Z + r(e), (23) 1 - (- l)“e-‘ 2 2x _- __ 
FO, = T’O’ +e’ I ZL ) (24) 1 + (n7c/x)* I i x (nn)’ 

(28) 

with boundary conditions : (- l)“e-‘[l+ (n7-~/x)~] +2(nn)‘[l- (- 1)“e ‘l/x’ - .~ 

$(O) = *Co) = TVJ) = 0 on z=O 
[l + (nn/x)‘]’ 

ZZ Z 

)//(O’= p =o p) = -e-x on z= -_x (25) b,?=-? L_ 
[ 

1 - (- l)“e-” 
I >Z , 

and the initial conditions $(‘) = pa’ = 0 at t = 0. The 
x* @r/x)2 1 + (ndx)* I 

equations for I/I’“’ and T”) are linear and algebraic 1-(-l)Vr 
in the horizontal coordiqate, greatly simplifying t& 
analysis. These equations show that at zero order in 

1 + (WC/x)2 I 
(29) 

A, the only processes that are significant are for T”‘, 
vertical conduction and internal heating and for I/Y”‘, 
vertical shear and buoyancy. 

The zero-order temperature is a standard unsteady, 
one-dimensional heat conduction problem. There is a 
slight difficulty in that the system does not have a 
steady state since heat is continuously added but none 
is allowed to escape either through the boundaries or 
horizontally. The solution can be found by taking 
Laplace transforms in t and is given by : 

At this point, it is interesting to note how each 
part of the forcing term arises. The a, + c,t terms are 
independent of z and represent the mean horizontal 
gradient of T”‘. All terms except the cot term remain 
finite or vanish as t becomes large. Thus, as t -+ co, 

. the cot term will dominate and the temperature will 
be vertically uniform. This means that at large times 
the zero-order flow will not be affected by any vertical 
structure in the temperature. The b,z’ term represents 
a change in the horizontal temperature gradient with 
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depth. This arises because the isotherms in the flow 
domain must curl over to meet the boundary con- 
dition at z = -x. The remaining terms arise from the 
transient terms of T”“. Notable for its absence is that 
part of T’“’ (namely e) which balances the internal 
heating. That part of the solution has no horizontal 
dependence and thus has no effect on the flow at zero 
order. 

The boundary value problem for $‘“’ is linear and 
so each term of the forcing function r$“, can be con- 
sidered separately and then the corresponding solu- 
tions superimposed. The solution can be found using 
Laplace transforms in t: however, the details are 
tedious and are not included here. The full solution 
for $ “) is given by : 

qp’ = &y’ + b,qj’u’ + (’ $@) ? 0 ? 
I 

+ /y (we +~,A/?~~ + ~~.vc~,~ (30) 

where cl/‘,“‘, $i”‘, $y’, $Ej, $i”,‘, and $k”,’ are given in 
the Appendix and a,,, 6,, and c,,, n = 0, I, 2, . are 
given by equations (28) and (29). 

4. DISCUSSION 

4.1. Preliminary- remarks 
It is important to note from the outset that the 

asymptotic solutions found above for the daytime cir- 
culation have no steady state. This fact manifests itself 
via the continuoQy increasing temperature. Also, 
there is a continuously increasing horizontal tem- 
perature gradient which implies that the velocities in 
the model sidearm also never reach a steady state. 
However, the system does ultimately reach a quasi- 
steady state. Both T”” and I,@“’ include terms that are 
proportional toCt which dominate for large times. For 
T”“, the large time behavior is 7”“’ --t t/x as t -+ co 
which is a vertically uniform temperature with an ever 
increasing horizontal gradient. This in turn leads to 
an ever increasing magnitude of the circulation in the 
sidearm with the large time behavior of $(“) being : 

101 1 
lo + - ---z(z+x)*(~z-_Y) as t -+ cc. (31) 

480x2 

The above large time behavior of $(‘j is the same (up 
to a variable transform and the time dependence) as 
the steady-state solution found by Cormack et al. [ 161 
for the flow in a rectangular cavity with differentially 
heated end walls and a stress free surface. The lack of 
a steady-state solution is of no great concern since 
in this paper&he primary interest is in the transient 
response. In a real sidearm, the solutions here will 
only be of interest while the daytime forcing is applied 
and the accelerating flow will eventually be countered 
by the reverse pressure gradient established by night- 
time cooling. Thus these results describe only the spin 
up of the daytime circulation. 

Even though the behavior above has been dubbed 
the large time behavior, this is not strictly correct. The 
e-folding times of the transient terms of Ic/(‘) and T”” 
are : 

I,= 5 0 
2 

for T(O) 
71 

For T(“‘, the e-folding time is indicative of how long 
it takes for heat to be,diffused across the local depth 
and, for ti (“I, it is the time taken for viscosity to diffuse 
momentum over the local depth. The important point 
here is that the e-folding times both vanish as x 
becomes small. That is, for any t > 0, there will be a 
region near the tip that will be exhibiting the large 
time behavior. Thus, even though the primary interest 
here is in the transient response, the ‘large time’ 
behavior will always be present somewhere in the flow 
domain. 

4.2. Temperature structure 
The asymptotic solution for T(O) [equation (26)] has 

three identifiable components. The first is a linear 
function of t which is independent of z. This term 
is the vertically averaged temperature. The second 
component is, independent oft but is a function of z. 
This component is that part of the solution that bal- 
ances the internal source and satisfies the flux boun- 
dary conditions. Lastly, there is the infinite sum of 
the transient terms that reflect the way the system 
approaches quasi-steady large time behavior. These 
terms ensure that the initial condition is satisfied. 

Each of the components mentioned above has a 
different importance at different times and places. To 
see this, consider the case where x is fixed but arbitrary 
and allow t to increase from zero. The e-folding time 
of the transient terms increases with x. The initial 
transient phase persists until the vertical fluxes in the 
temperature profile are in equilibrium. When this 
occurs, there will be no change in the shape of the 
temperature profiles and the only time dependence 
will be a linear increase in the mean temperature. 
Which of the remaining two terms will dominate just 
after the transient terms have become negligible 
depends on x. Interestingly, there are three regimes; 
one near the tip where the t/x term is most important, 
one for moderate x where the vertical dependence is 
the most important and another for large x where the 
t/x term again dominates the behavior. 

As x -+ 0, that part of the solution that is z depen- 
dent remains finite while the t/x term increases without 
limit. Thus, there will be some region near x = 0 where 
t/x will dominate the behavior immediately after the 
transient terms have become negligible. Note that, as 
soon as the t/x term dominates, it will always domi- 
nate since it is the only tern? that increases with t. 
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As x becomes larger, the magnitude of the t/x term 
decreases but the z dependent term remains approxi- 
mately constant (there are terms which are inde- 
pendent of x). This will lead to a region where the 
z dependent, t independent terms will dominate the 
temperature behavior immediately after the transient 
terms have vanished. In this region, the slope of the 
isotherms will be somewhere between vertical and 
horizontal reflecting the strong vertical dependence. 
Finally, as x + CC, the e-folding time of the transient 
terms increases with ? while the time taken for the 
f/_~ term to become important is linear with X. Thus, 
even though the -? dependent. t independent terms do 
not vanish as s -+ c : by the time that the transient 
terms have become negligible, the t/.x term has already 
started to dominate the temperature structure. In 
other words, for very large X, the initial transient phase 
lasts longer than the time it takes for the t,‘u term to 
dominate the behavior of the temperature. This means 
that the vertical temperature structure is still evolving 
as the horizontal gradient associated with the t/x term 
dominates the overall structure. 

Figure 2 shows a number of temperature profiles at 
x = 1 for times that include the initial regime where 
the structure is undergoing significant changes. For 
this value of x, the heating from the bottom boundary 
‘is more significant than that from internal heating. 
From t = 0 to f = 0.03, the heat that has been pumped 
in from the bottom boundary has diffused out into 
the core of the fluid. By t = 0.04, the profile has settled 
down to its large time behavior and the only significant 
change with time is an increase in the mean tem- 
perature associated with the linear time dependence. 
This figure provides an example of a region where the 
s-dependent terms dominate the behavior immedi- 
ately after the transient terms have become small. 
Even though the transient terms are negligible for 
I > 0.03, the difference in the surface and bottom tem- 
peratures is larger than the mean temperature. This 
will be the case until the mean temperature has 
increased to a value larger than the temperature 
difference over the depth, which will occur at t z 0.2. 
Note that, in all of these profiles, there is warm, less 

_.” 
0 0.02 0.04 0.06 0.08 0.10 0.12 

P 

2. A series of temperature profiles at various times at 
1 where the bottom heating dominates the heat input. 

dense fluid underlying cooler denser fluid. This is a 
potentially unstable situation. The issue of the sta- 
bility of the O(A”) solutions found in this paper has 
been addressed by Farrow and Patterson [ 171. 

Figure 3 shows the series of profiles of T’“’ for the 
larger value of .y = 5 at the same times as those of Fig. 
2. At this value of x, the e-folding time is much larger 
and so it takes much longer for the profiles to reach 
their large time behavior. Note also that, for this value 
of x, the internal heating component dominates the 
bottom boundary heating and in fact the bottom is 
effectively insulated. The temperature structure at 
x = 5 will reach its large time behavior when the heat 
added near the surface has had time to diffuse to the 
bottom. This will occur at t z 1 which is greater than 
the time for the r/.x term to become dominant. Thus. 
the ti.u t&rm;wilj dominate the behavior before the 
shape of the tetiperature profile has stopped under- 
going significant changes. Hence these profiles provide 
an example of the large I behavior discussed 
previously. 

The overall structure of the temperature can be seen 
in Fig. 4 where temperature contours at t = 0.5 are 
shown. For .Y < 0.5, the isotherms are nearly vertical, 
indicating that the temperature there has reached its 
large time behavior. The temperature for x < 0.5 is 
given approximately by T’“’ z t/s. For .Y > 3, the 
bottom boundary is essentially insulated. Thus, at this 
time, the structure is divided into two regions; one 
with large horizontal temperature gradients and small 
vertical gradients and one with small horizontal tem- 
perature gradients and large vertical temperature 
gradients. 

The development of the temperature structure with 
time can be seen in Fig. 5 where temperature contours 
arc shown at t = 5. At this time, much of the plotted 
domain is showing the large time behavior with most 
of the isotherms being vertical. Thus. as time moves 
on, the point that divides the region with vertical 
isotherms from the region with horizontal isotherms 
moves out from s = 0. This occurs because the mean 
horizontal temperature gradient steadily increases 
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FIG. 3. A series of temperature profiles at the same time 
as the previous figure except at Y = 5 where the internal 

absorption of rddlation dominates the heat input. 
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FIG. 4. Temperature contours at I = 0.01 showing the two regions with vertical and near horizontal isotherms. 
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FIG. 5. Temperature contours at I = 5.0 showing how the structure has changed as more of the domain 
contains vertical isotherms. 
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FIG. 6. Contours of ti(‘) at t = 0.01 showing the closed streamlines. 

while the vertical gradient associated with the bottom 
and internal heating remains constant. 

To summarize, the temperature response is charac- 
terized by three different Fegions ; one with vertical 
isotherms near the tip, one with horizontal isotherms 
away from the tip and an intermediate section between 
these two regions which moves out from the tip as 
time progresses, reflecting the large time behavior 
influencing more and more of the temperature struc- 
ture. Note that, in the horizontal isotherms region, 
the isotherms have to curl over to meet the bottom 
boundary condition at z = --x. As will be discussed 
later, this leads to a flow up the bottom boundary due 
to a mechanism described by Phillips [18] and Wunsch 

t191. 

4.3. Velocityjeld 
Much 8f the discussion about the way the tem- 

perature structure develops with time carries over to 
the velocity behavior. In particular, there is always 
some region near the tip that is exhibiting large time 
behavior and the size of this region increases with 
time. Figures 6 and 7 show two streamline plots at 
different times illustrating this. For t = 0.01 (Fig. 6) 

and x < 0.5, the streamfunction is well approximated 
by equation (31). However for t = 5.0 (Fig. 7), the 
large time behavior has occupied up to x = 3. As well 
as the size of the large time behavior region increasing 
with time, the magnitude of the circulation also 
increases with time. An important feature of both 
these figures is that all the streamlines are closed. This 
is quite different to the large time behavior given by 
equation (31). In fact, putting z = -x/2 into equation 
(31) shows that, at large times, $(‘) is monotonically 
increasing in magnitude without limit as x + co. The 
closed streamlines patterns can be explained in the 
following way. For any particular time, the tern 
perature structure within the sidearm can be divided 
into two regions, one with vertical isotherms and one 
with horizontal isotherms. In the region with vertical 
isotherms, there is clearly a horizontal gradient that 
will drive a clockwise circulation. In the other region, 
the horizontal isotherms impose no horizontal pres- 
sure gradient and will thus not drive any flow. 
However, even in the latter region, the isotherms have 
to curl over to meet the bottom boundary condition. 
This curling over of the imtherms near z = -x will, 
as pointed out by Phillips [ 181, lead to an upslope flow. 
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FIG. 7. Contours of I//‘” at I = 5.0 showing how the flow develops with time with more of the domain 

demonstrating the large time behavior. 

Phillips showed that the magnitude of the velocity. up 
the slope was proportional to the background density 
gradient. In this case where the background density is 
a consequence of the internal heating, the gradient 
near the boundary dies off exponentially with X. This 
means that the magnitude of the upslope velocity will 
decrease exponentially with distance from the tip. This 
in turn leads to an exponential decrease of $‘“’ with x 
leading to the closed streamlines in Figs 6 and 7. 

A clearer picture of the evolving flow can be seen 
in Fig. 8 where a series of velocity profiles at various 
times are plotted at x = 2.5. At t = 0.02, the flow due 
to the Phillips mechanisms can be seen clearly as a 
local upslope flow near the bottom z = - 2.5. At this 
time and above z = - 2, the velocity essentially has a 
plug profile, that is, the velocity is constant with depth. 
As time moves on, a number of things happen. Firstly, 
the flow up the slope accelerates. The flow near the 
bottom boundary is dominated by viscosity and thus 
the flow increases as the temperature gradient 
increases. At the same time, the slight background 
temperature gradient arising from the t/x term of T”” 
is accelerating the core flow where a buoyancy -inertia 
balance holds. This leads to a linear velocity profile 
applying at the mid depths where the horizontal gradi- 
ent due to this term is most dominant. This can be 
seen between -2 < z < - 1.5 at t = 0.12. The e-fold- 
ing time of the transient terms of the velocity at this 
value of x is much longer than f = 0.12, meaning that 
the flow is still inertial. The flow will remain inertial 
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until it has accelerated to the point where vertical 
shear becomes important over the whole depth. When 
that time has been reached, the flow will be well 
appro imated by the large time response in equation 
(31). iG otd ai& that as time increases the thickness of 
the upslope flow increases as viscosity diffuses momen- 
tum away from the boundary. 

Figure 9 shows a series of velocity profiles at the 
same times as Fig. 8 except for a smaller value of 
s = 0.25. Here, the times are comparable to the c’- 
folding time of the transient terms and so the flow 
becomes rapidly viscous. The transient terms of r(“’ 
also vanish quickly here. The velocity profile rapidly 
becomes cubic and, by t = 0.12, is well approximated 
by the large time behavior (dashed line). Notice, how- 
ever, that the full solution gives rise to larger velocities. 
This is because the other non-transient terms of T”’ 
and I,#“’ should be included as they will have a notice- 
able effect on the profile. The extra terms increase the 
temperature gradient there and will thus lead to an 
increased velocity. 

One of the aims of this paper is to determine what 
effect a significant vertical density structure would 

have on the how. This effect can now be deduced from 
the asymptotic solutions found above. When there is 
a significant vertical density structure, the most sig- 
nificant driving force for initiating a circulation in the 
sidearm is near the bottom boundary. The flow near 
the bottom boundary is driven either by the buoyancy 
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PC. 9. Velocity profiles at x = 0.25 for the same time as 

FIG. 8. Velocity profiles at various times at x = 2.5. The the previous figure showing the rapid approach to viscous 
Phillips mechanism is generating an upslope flow evident dominance. The dashed line is the large time behavior given 

near the bottom boundary. by equation (31). 
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FIG. 10. Temperature contours in Salmon Brook at 12 noon 
in February (from Monismith et al. [3]). 

flux associated with the temperature boundary con- 
dition there (X < 1) or the turning over of the iso- 
therms to meet the effectively insulated bottom 
boundary condition (X > 1). In both cases, the stably 
stratified regions away from the bottom boundary are 
quite passive and the horizontal velocity in them is 
vertically constarrhand its magnitude is a result of 
conservation of mass ; the flow up the slope must be 
balanced by a corresponding flow out away from the 
tip. The effect of the vertical stratification is limited to 
times less than the time it takes for viscosity to diffuse 
momentum ov;r the local depth. For later times, the 
flow takes on the classic cubic profile of Cormack et al. 
[ 161. Perhaps the most important effect of the vertical 
stratification is that it locks bp energy that could 
otherwise be used to drive a stronger circulation. If 
the heat had been vertically averaged as it was in the 
model considered by Farrow and Patterson [ 131 for 
the diurnally forced case, the velocities would be 
larger. Thus, the strong stratification present during 
the day limits the magnitude of the circulation not 
because it retards motion but because it prevents the 
available energy from driving a stronger circulation ; 
the energy has gone into vertical rather than hori- 
zontal gradients. 

4.4. CompariW withjield observations 
There is some evidence that temperature structures 

similar to those just described occur in the field. Figure 
10 shows temperature contours taken in Salmon 
Brook (a sidearm of Wellington Reservoir in Western 
Australia) at 12 noon in February [3]. For distances 
greater than 200 m from the tip, there is a strong 

vertical stratification associated with the absorption 
of solar radiation. For distances less than 200 m, how- 
ever, there is a strong horizontal gradient. A more 
quantitative comparison between 7’@’ and field 
measurements is difficult since the real sidearm, unlike 
the idealized model, still has some structure associated 
with the previous night’s cooling and other effects, 
such as wind, which are not included in the model 
considered in this paper. 

The above asymptotic solutions can be used to esti- 
mate the magnitude of the daytime velocity in a real 
sidearm. For the sidea+rm considered by Monismith et 
al. [3], the bulk parameters are A z 0.02 and I, E 300 
W m-‘. There is no indication from Monismith et al. 
about appropriate values for v : however, from Kirk 
[2], a representative value is q z 2 m- ‘. During the 
day, the velocities in a sidearm are typically small and 
there is a strong, stable stratification suggesting that 
molecular values are appropriate for v and K. 
Assuming that the heating has been underway for 6 
h, which corresponds to a non-dimensional time of 
t = 0.01, and the usual values for the remaining par- 
ameters, the model described above yields a maximum 
horizontal velocity of 10 cm s-l. This is consistent 
with the observations of Monismith et al. [3] and 
Adams and Wells [4] where maximum velocities of 
7.5-15 cm s-’ were reported. The value of 10 cm s-’ 
should be contrasted with that of 90 cm s- ’ that would 
arise if the heat had been uniformly distributed in the 
vertical [ 131 and so the more realistic modelling of the 
heat input has had a significant effect on the results of 
this model. 

5. CONCLUDING REMARKS 

This paper has addressed the effect that vertical 
stratification has on the flow in a reservoir sidearm. 
This is particularly important during the day where 
the absorption of solar radiation leads to a strong 
vertical temperature gradient, especially near the 
surface. The model formulated to examine this led to 
a temperature field that reflected observed daytime 
temperature structures in real sidearms. The sidearm 
can be divided into two main regions; one with ver- 
tical isotherms and one with horizontal isotherms. In 
the former region, horizontal gradients are large and 
drive a circulation with a surface outflow. In the latter 
region, the horizontal isotherms must curl over to 
meet the flux boundary condition at the sloping 
bottom. This leads to an upslope flow due to a mech- 
anism described by Phillips [18]. The magnitude of 
the upslope flow is proportional to the strength of the 
vertical density gradient in the vicinity of the bottom 
boundary. This strength decreases exponentially with 
distance from the tip leading to closed streamlines. 
This is different to what would occur if the heat had 
been distributed uniformly ip the vertical. Thus, the 
primary effect of the vertical stratification is to change 
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the geometry of the flow such that the flow is restricted 
to a region near the tip whose size increases with f, 

I){“’ = ~z(z+x)‘(2-s) 
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APPENDIX A 

The functions (1/y’, +$“), $\“‘, I/IL\), $0, and I/&) are given 
by: 
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where in the above equations /I,,,, m = 1,2,. , are the posi- 

?ln (nn)’ - /?z, (ns)’ -a/fl; tive roots of the equation sin flrn = Pm cos 8,. 


